\square
VASAVI COLLEGE OF ENGINEERING (Autonomous), HYDERABAD

M.E. (EEE: CBCS) I-Semester Main Examinations, January-2018

(Power Systems \& Power Electronics)

Advanced Computer Methods in Power Systems

Time: 3 hours
Note: Answer ALL questions in Part-A and any FIVE from Part-B

Q. No	Stem of the Question	M	L	CO	PO
Part-A (10 $\times 2=20$ Marks)					
	Define the following terms i) Link ii) Basic loop	2	1	1,2	1
2.	Show that $A_{b} K^{t}=U$	2	2	1,2	1,2
3.	What do you mean by triangularization?	2	1	1,2	1,2
4.	Write expressions for Z_{qi} and Z_{qq} when added element is a branch. Assume P is reference node?	2	2	1,2	1,2
5.	What is the importance of load flow studies in power systems?	2	2	3	1,3
6.	What is acceleration factor? In which method of load flow this factor is recommended?	2	2	3	1,3
7.	Write the importance of Clark's transformation matrix?	2	2	1,2	1,2
8.	Write the equations for $Z_{i l}^{a b c}$ and $Z_{l l}^{a b c}$	2	3	1,2	1,2
9.	What are the different types of faults and write the effect of each fault on the power system?	2	2	2	1,2
	Estimate the fault level when a fault takes place in power system? $\text { Part-B }(5 \times 8=40 \text { Marks })$	2	3	1,2	1,2
11. a)	The transpose of the matrix A is given by A^{t} $=\left[\begin{array}{cccccc} -1 & 1 & 0 & 1 & 0 & 0 \\ 0 & -1 & 1 & 0 & 0 & 0 \\ 0 & 0 & -1 & -1 & 1 & 0 \\ 0 & 0 & 0 & -1 & 1 & 1 \end{array}\right]$	6	4	1,2	1,2
b)	Draw its oriented graph and obtain $\mathrm{B}, \bar{B}, \mathrm{C}, \bar{C}$ and K matrices of the network? Write the equation for Zloop by singular transformation?	2	2	1,2	1,2
12. a)	Find Zbus for the system shown in fig.	4	5	2	1,2
b)	Explain the algorithm for formation of Zbus matrix	4	2	3	1,2

13. a) With the help of flowchart, explain how to obtain load flow solution using Fast decoupled load flow method?
b) Explain the classification of buses in load flow studies.
14. a) Explain an algorithm for formation of three-phase bus impedance matrix for addition of branch?
b) What are transformation matrices and write their significance.
15. a) Derive the expressions for fault currents, voltages when 3-phase to ground fault occurs at bus P. Also write flowchart?
b) What are the basic assumptions made in short circuit studies.
16. a) For the network shown in fig., obtain the bus admittance matrix by singular transformation?

b) What are the advantages of Zbus building algorithm?
17. Answer any two of the following:
a) Compare the various methods of load flow study?
b) Show that impedance matrix is same both in symmetrical components and Clark's components for a balanced three-phase stationary elements?
c) Derive $Z_{F}^{a b c}$ for LLG fault on phases b and c ?

5	2	3	1,3,
3	2	3	1,2
5	4	3	1,3,
3	2	2	1,2
5	4	1,2	1,2
3	2	2	1,2
5	5	1,2	1,2
3	2	1,2	1,3
4	1	1,2	1,3
4	2	1,2	1,2
4	3	1,2	1,2

M: Marks; L: Bloom's Taxonomy Level; CO: Course Outcome; PO: Programme Outcome

S. No.	Criteria for questions	Percentage
1	Fundamental knowledge (Level-1 \& 2)	58.75
2	Knowledge on application and analysis (Level-3 \& 4)	30.0
3	*Critical thinking and ability to design (Level-5 \& 6) (*wherever applicable)	11.25

